Modeling airway resistance dynamics after tidal and deep inspirations.
نویسندگان
چکیده
Using the forced oscillation technique, we tracked airway resistance continuously during quiet breathing (QB) and deep inspiration (DI), thus observing fluctuations in resistance that may reflect mechanisms of airway stretch and renarrowing. After DI, however, the resistance may be depressed for a period not related to volume changes. We hypothesized that this gradual increase in resistance after DI-induced dilation was determined by a simple time constant. Furthermore, to the extent that this effect reflects dynamic characteristics of airway renarrowing, the resistance change after each tidal inspiration should also be constrained by this temporal limit. A model relating resistance fluctuations to the breathing pattern, including both instantaneous and delayed effects, was developed and applied to data from 14 nonasthmatic and 17 asthmatic subjects (forced expiratory volume in 1 s = 103 +/- 13 and 83 +/- 12%, respectively, means +/- SD) after methacholine challenge (dose 145 +/- 80 and 3.0 +/- 3.4 micromol, respectively) that resulted in respective forced expiratory volume in 1 s reductions of 16 +/- 7 and 24 +/- 6% from baseline. Resistance was measured continuously for 1 min of QB, a DI, followed by a further minute of QB. Resistance values at end expiration (Ree) and end inspiration were calculated. We found that the sequence of Ree after DI was best modeled by a power-law function of time rather than an exponential decay (r2 = 0.82 +/- 0.18 compared with 0.63 +/- 0.16; P < 0.01). Furthermore, the coefficient characterizing this "renarrowing function" was close to equal to the coefficient characterizing the equivalent function of resistance change between each resistance value at end inpiration and subsequent Ree during QB, particularly in the nonasthmatic subjects for whom the intraclass correlation was 0.66. This suggests that the same time-dependent factors determine renarrowing after both large and small breaths.
منابع مشابه
Selected contribution: airway caliber in healthy and asthmatic subjects: effects of bronchial challenge and deep inspirations.
In 9 healthy and 14 asthmatic subjects before and after a standard bronchial challenge and a modified [deep inspiration (DI), inhibited] bronchial challenge and after albuterol, we tracked airway caliber by synthesizing a method to measure airway resistance (Raw; i.e., lung resistance at 8 Hz) in real time. We determined the minimum Raw achievable during a DI to total lung capacity and the subs...
متن کاملResponsiveness of the isolated airway during simulated deep inspirations: effect of airway smooth muscle stiffness and strain.
In vivo, breathing movements, including tidal and deep inspirations (DIs), exert a number of beneficial effects on respiratory system responsiveness in healthy humans that are diminished or lost in asthma, possibly as a result of reduced distension (strain) of airway smooth muscle (ASM). We used bronchial segments from pigs to assess airway responsiveness under static conditions and during simu...
متن کاملA novel hypothesis to explain the bronchconstrictor effect of deep inspiration in asthma.
BACKGROUND In healthy subjects deep inspiration transiently dilates the airways, while many asthmatic subjects show bronchoconstriction by a mechanism which is incompletely understood. We hypothesised that the negative intrathoracic pressure associated with deep inspiration occurring in the context of increased leakiness of the airway vasculature may temporarily increase airway oedema and thus ...
متن کاملAirways dilate to simulated inspiratory but not expiratory manoeuvres.
In a healthy human, deep inspirations produce bronchodilation of contracted airways, which probably occurs due to the transient distension of the airway smooth muscle (ASM). We hypothesised that deep expiratory manoeuvres also produce bronchodilation due to transient airway wall and ASM compression. We used porcine bronchial segments to assess the effects of deep inspirations, and maximal and p...
متن کاملAirway smooth muscle in asthma: flirting with disaster.
Airway hyperresponsiveness is the excessive narrowing of the airway lumen caused by stimuli that would cause little or no narrowing in the normal individual. It is one of the cardinal features of asthma but remains largely unexplained. Sometimes, though, clues to the greatest mysteries are right in front of us but we do not see them, and the role of breathing in airway hyperresponsiveness may b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2004